Efficiency Analysis of Perovskite-Based Solar Panels in Tropical Climates

Authors

  • Adilla Miftahul Jannah Universitas Islam Negeri Mahmud Yunus Batusangkar Author
  • Affikah Rizki Yandra Universitas Islam Negeri Mahmud Yunus Batusangkar Author
  • Nong chai Chulalongkorn University, Bangkok Author

Keywords:

Energy Efficiency, Perovskite Material, Solar Panel

Abstract

The decline in efficiency of conventional silicon-based solar panels in tropical climates has become a significant concern in the advancement of renewable energy technologies. Environmental factors such as high temperatures, extreme humidity, and intense ultraviolet (UV) radiation contribute to material degradation, leading to reduced long-term performance. In response to these challenges, perovskite materials have emerged as a promising alternative, offering high efficiency and lower production costs. This study aims to analyse the efficiency performance of perovskite-based solar panels in tropical environments, identify the key environmental factors affecting their performance, and compare their resilience with that of conventional silicon panels. A qualitative case study approach was employed, using data collection techniques such as in-depth interviews, direct observation of test units, and technical documentation over a one-year monitoring period. The findings indicate that perovskite solar panels maintained up to 85% of their initial efficiency after one year of deployment, despite performance degradation caused by high humidity levels and prolonged UV exposure. Compared to silicon panels, perovskite panels demonstrated better adaptability to tropical conditions, although improvements in material durability are still needed. These results highlight the significant potential of perovskite materials for energy applications in tropical regions and underscore the importance of further research into protective coating technologies and material stabilisation strategies to enhance their long-term performance and reliability.

References

Apriliyanti, K., & Rizki, D. (2023). Kebijakan energi terbarukan: Studi kasus indonesia dan norwegia dalam pengelolaan sumber energi berkelanjutan. Jurnal Ilmu Pemerintahan Widya Praja, 49(2), 186–209. https://doi.org/10.33701/jipwp.v49i2.3684

Arya, S., & Mahajan, P. (2023). Organic–Inorganic Hybrid Solar Cells. Dalam Solar Cells: Types and Applications (hlm. 165–195). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7333-0_6

Avasthi, A., Garg, R., & Mahajan, P. (2025). Optimizing energy harvesting: A comprehensive analysis of tracking technologies in a 2 $${hbox {MW}}_P$$floating solar photovoltaic system. Electrical Engineering, 107(4), 4663–4681. https://doi.org/10.1007/s00202-024-02780-3

Awan, T. I., Afsheen, S., & Mushtaq, A. (2025). Role of Noble Metals in the Efficiency of Solar Cells. Dalam Influence of Noble Metal Nanoparticles in Sustainable Energy Technologies (hlm. 129–150). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80983-5_6

Belva, C. D. Q., & Raspati, B. (2024). Pengembangan Teknologi Dalam Memanfaatkan Eenergi Terbarukan Di Ibu Kota Nusantara Dengan Program Smart City. Journal of Law, Administration, and Social Science, 4(5), 906–919. https://doi.org/10.54957/jolas.v4i5.904

Dwisari, V., Sudarti, S., & Yushardi, Y. (2023). Pemanfaatan energi matahari: Masa depan energi terbarukan. OPTIKA: Jurnal Pendidikan Fisika, 7(2), 376–384. https://doi.org/10.37478/optika.v7i2.3322

Erduran Tekin, Ö. (2024). Academic self-discipline as a mediating variable in the relationship between social media addiction and academic achievement: Mixed methodology. Humanities and Social Sciences Communications, 11(1), 1096. https://doi.org/10.1057/s41599-024-03633-x

Ganesh, I. (2025). Technologies Available Today to Generate Electricity from Sunlight and Their Current Status. Dalam Harvesting Solar Energy: Using CO₂ and H₂O as Energy Storage Materials (hlm. 17–55). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-2321-1_2

Hosseini, F., Sheikholeslami, M., & Ghasemian, M. (2024). Recent techniques for cooling of concentrated photovoltaic thermal systems. Journal of Thermal Analysis and Calorimetry, 149(9), 3913–3935. https://doi.org/10.1007/s10973-024-12984-1

Irawati, I., Sumarno, E., & Irwansyah, N. (2023). Prototype mesin perontok padi dengan motor penggerak tenaga surya. JEIS: Jurnal Elektro dan Informatika Swadharma, 3(2), 18–28. https://doi.org/10.56486/jeis.vol3no2.353

Islam, M. N., & Bag, A. (2025). Smart Materials as Nanosensors in Solar Cell Perspectives. Dalam I. Uddin (Ed.), Smart Nanosensors (hlm. 301–364). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-3878-9_13

Järvinen, M., Paulomäki, H., Laitila, E., Popov, G., Golroudbary, S. R., Lundström, M., Wilson, B. P., Talala, R., Sadiqa, A., Apajalahti, E.-L., & Dańkowska, A. (2025). Solar Energy. Dalam M. Järvinen & H. Paulomäki (Ed.), Designing Renewable Energy Systems within Planetary Boundaries: A Textbook for Energy Engineers (hlm. 247–344). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-69856-9_4

Kamble, A. D., Das, S., Vijaya, Das, B., Bordoloi, U., Hazarika, P., & Kalita, P. (2024). Role of Solar Energy in the Development of the Indian Economy. Dalam S. De, A. K. Agarwal, & P. Kalita (Ed.), Challenges and Opportunities of Distributed Renewable Power (hlm. 489–535). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1406-3_18

Lubis, R. S., Siregar, R. H., Walidainy, H., & Putra, T. E. (2024). Pelatihan Merencanakan Dan Memasang Panel Surya Di Rumah Hunian. Kawanad: Jurnal Pengabdian kepada Masyarakat, 3(1), 14–21. https://doi.org/10.56347/kjpkm.v3i1.184

Phogat, P., Sharma, S., Jha, R., & Singh, S. (2024). Photoelectrochemical Solar Cells. Dalam Electrochemical Devices: Principles to Applications (hlm. 29–99). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-0527-9_2

Pratama, D., & Asnil, A. (2021). Sistem monitoring panel surya secara realtime berbasis arduino uno. MSI Transaction on Education, 2(1), 19–32. https://doi.org/10.46574/mted.v2i1.46

Rohmani, R. (2022). Pengantar Dasar IPA. Jurnal Pendidikan dan Pembelajaran, 1(2), 1–133. https://doi.org/10.70294/juperan.v1i2.13

Siagian, P. (2022). Pengembangan Panel Surya 120 Wp Dengan Solar Tracker Double Axis Sebagai Bahan Pembelajaran Mahasiswa di Program Studi Teknik Mesin UHN. sprocket journal of mechanical engineering, 3(2), 115–128. https://doi.org/10.36655/sprocket.v3i2.658

Soetadji, P., & Khoirudin, A. (2024). Argumen Listrik Tenaga Surya (Photovoltaic) Perspektif Fikih Energi Terbarukan. Ranah Research: Journal of Multidisciplinary Research and Development, 7(1), 310–321. https://doi.org/10.38035/rrj.v7i1.1182

Wang, C., Xie, Z., Han, N., Ding, Y., Su, B.-L., & Ng, Y. H. (t.t.). State of the Art and Prospects for Lead-Free Halide Perovskites in Photocatalytic CO2 Reduction (hlm. 1–78). Springer Nature Switzerland. https://doi.org/10.1007/17361_2025_7

Yagmur, A., Gürsoy, S., & Gunbayı, I. (2024). Mixed-methods analysis of multidimensional conditions for the Human Development Index: A fuzzy set qualitative comparative analysis (FsQCA) study. Journal of Social and Economic Development, 26(1), 214–234. https://doi.org/10.1007/s40847-023-00265-w

Yusuf, R. A., Setianingsih, P. I. A., Hernawan, A. D., Deviany, D., Yusupandi, F., Suryanto, I., Armanda, S., Yusadetama, E. A., Corrysha, J. L., & Nugraha, D. A. (2024). Perkembangan concentrated solar cells (CSC) untuk meningkatkan efisiensi energi matahari menuju energi bersih dan berkelanjutan. JITEL (Jurnal Ilmiah Telekomunikasi, Elektronika, dan Listrik Tenaga), 4(3), 195–208. https://doi.org/10.35313/jitel.v4.i3.2024.195-208

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Efficiency Analysis of Perovskite-Based Solar Panels in Tropical Climates. (2025). Ciencia: Multidisciplinary Journal of Science, 1(1), 33-42. https://journal.zmsadra.or.id/index.php/mjs/article/view/52