Fluid Dynamics Simulation of Microflows in Microfluidic Devices
Keywords:
Fluid Dynamics, Microfluidic, Numerical SimulationAbstract
This study explores fluid dynamics in micro-scale flows within microfluidic devices, which exhibit unique characteristics distinct from those observed in macroscale systems. The primary objective of this research is to analyze and simulate fluid flow behavior using numerical methods while assessing the influence of device design parameters on flow performance. The study adopts a qualitative descriptive approach, employing data collection methods such as interviews, direct observations, and documentation analysis. Through comprehensive analysis, the results reveal that microfluidic flow is highly sensitive to channel geometry and various physical factors, particularly fluid viscosity and surface tension. These factors significantly alter flow patterns, velocity distribution, and overall fluid behavior within microchannels. The study also identifies how design variations can either enhance or hinder fluid transport efficiency, depending on their alignment with the intrinsic properties of microfluidic systems. Simulations performed during the study further confirm the nonlinear interactions between channel dimensions and fluid properties, emphasizing the importance of precise calibration during the design process. Based on these findings, the study recommends design optimization strategies that prioritize not only functional performance but also stability and reliability in microfluidic operations. The insights provided are expected to contribute to the development of more effective microfluidic devices, particularly for applications in biomedical diagnostics, chemical analysis, and lab-on-a-chip systems. Overall, this research highlights the critical role of microfluidic design considerations in achieving accurate and efficient fluid control at the microscale
References
Abdi, G., Chhabra, N., Shiriskar, J., Srinivasan, G., Dhariwal, R., & Jain, M. (2024). Microfluids in Metabolites Detection, Production, and Optimization. Dalam V. Singh (Ed.), Advances in Metabolomics (hlm. 219–255). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-7459-3_10
Acciai, C. (2023). Choosing and Blending Instruments for R&I Policies. Dalam Policy Design for Research and Innovation: Politics, Institutions and Interest Intermediation Practices (hlm. 69–104). Springer International Publishing. https://doi.org/10.1007/978-3-031-36628-4_3
Ahmad, N., Muhammad, M., Dyah, A. I., Bahauddin, M. A., & Ismawati, N. (2024). Gerakan Tubuh Manusia: Biomekanika Dalam Olahraga. Borneo Novelty Publishing. https://ebooks.borneonovelty.com/publications/588068/gerakan-tubuh-manusia-biomekanika-dalam-olahraga#cite
Anshory, I., & Wisaksono, A. (2022). Buku Ajar Dasar Konversi Energi. Umsida Press, 1–205. https://doi.org/10.21070/2022/978-623-464-040-3
Araújo, C. M., Azevedo, A. C., & Silva, F. A. N. (2023). Numerical Simulation of Moisture Transport Along Ceramic Bricks—Wetting Process. Dalam J. M. P. Q. Delgado (Ed.), Building Pathologies: Experimental Campaigns and Numerical Procedures (hlm. 1–56). Springer International Publishing. https://doi.org/10.1007/978-3-031-17061-4_1
Behera, A. (2022). Smart Fluid. Dalam Advanced Materials: An Introduction to Modern Materials Science (hlm. 193–223). Springer International Publishing. https://doi.org/10.1007/978-3-030-80359-9_6
Cooksey, R. W. (2024). The Evolving Landscape of Choices for Navigating the `Data Triangle’. Dalam Unity from Diversity: Pluralist Systemic Thinking for Social and Behavioural Research (hlm. 67–164). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-3462-7_2
Dake, P. G., Mukherjee, J., Sahu, K. C., & Pandit, A. B. (2024). Computational Fluid Dynamics in Cardiovascular Engineering: A Comprehensive Review. Transactions of the Indian National Academy of Engineering, 9(2), 335–362. https://doi.org/10.1007/s41403-024-00478-3
Ferhath, A. A., & Kasi, K. (2025). Conventional Flow Analysis Methods in Vehicle Damper Performance Evaluation. Discover Mechanical Engineering, 4(1), 8. https://doi.org/10.1007/s44245-025-00092-9
Gautheron, F., Quinton, J.-C., & Smeding, A. (2024). Conflict in moral and nonmoral decision making: An empirical study coupled with a computational model. Cognitive Processing, 25(2), 281–303. https://doi.org/10.1007/s10339-024-01178-0
Gharat, S. A., Momin, M. M., & Khan, T. (2024). Pharmacokinetic, Pharmacodynamic, Preclinical and Clinical Models for Evaluation of Nanoparticles. Dalam S. A. Gharat, M. M. Momin, & T. Khan (Ed.), Pharmacokinetics and Pharmacodynamics of Novel Drug Delivery Systems: From Basic Concepts to Applications: A Machine-Generated Literature Overview (hlm. 81–178). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7858-8_3
Herho, S. H. S., & Suwarman, R. (2024). Pengantar Dinamika Fluida Geofisika. Authorea Preprints. https://doi.org/10.22541/au.173456157.70907949/v1
Khambali, K., Fadhilah, I., Hartono, M., & Farida, N. N. (2025). PEMODELAN DINAMIKA FLUIDA PADA FUEL INJECTOR MOTOR BENSIN 4 LANGKAH. Otopro, 38–43. https://doi.org/10.26740/otopro.v20n2.p38-43
Lancmanová, A., & Bodnár, T. (2025). Numerical simulations of human respiratory flows: A review. Discover Applied Sciences, 7(4), 242. https://doi.org/10.1007/s42452-025-06617-x
Li, C., Xiao, J., Chen, X. D., & Jin, Y. (2025). In Silico Studies of Fluid Flow, Digestion of Food and Drug Dissolution in Human Stomach. Food Engineering Reviews. https://doi.org/10.1007/s12393-024-09393-3
Mukherjee, J., Chaturvedi, D., Mishra, S., Jain, R., & Dandekar, P. (2024). Microfluidic technology for cell biology–related applications: A review. Journal of Biological Physics, 50(1), 1–27. https://doi.org/10.1007/s10867-023-09646-y
Narváez-Muñoz, C., Hashemi, A. R., Hashemi, M. R., Segura, L. J., & Ryzhakov, P. B. (2025). Computational ElectroHydroDynamics in microsystems: A Review of Challenges and Applications. Archives of Computational Methods in Engineering, 32(1), 535–569. https://doi.org/10.1007/s11831-024-10147-x
Pandey, P., K., K. P., Mohanan, S., & Surenjan, A. (2025). Photocatalytic Reactor Modelling Incorporating Computational Fluid Dynamics (CFD) for Water and Air purification: A Concise Review. Process Integration and Optimization for Sustainability, 9(2), 471–485. https://doi.org/10.1007/s41660-024-00479-3
Rabbany, S. Y., Rooney, D. M., & Merna, N. (2024). Physiological Fluid Mechanics. Dalam Fundamentals of Biomechanics: From Cells to Organ Systems (hlm. 143–183). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71522-8_5
Sadasivan, S., Pradeep, S., Ramachandran, J. C., Narayan, J., & Gęca, M. J. (2025). Advances in droplet microfluidics: A comprehensive review of innovations, morphology, dynamics, and applications. Microfluidics and Nanofluidics, 29(3), 17. https://doi.org/10.1007/s10404-025-02789-5
Satrio, A., Mustari, A. P. A., Arbie, M. R., Saleh, I., & Ardani, M. A. (2025). Eksplorasi Dinamika Fluida FLiBe pada Reaktor Garam Cair: Studi Simulasi Pengosongan Tangki Bahan Bakar Menggunakan Metode Moving Particle Semi-Implicit. Jurnal Aplikasi Fisika, 21(1), 14–24. https://doi.org/10.62749/jaf.v21i1.p14-24
Siddqi, Z. F. (2024). Computational Fluid Dynamics: Modeling and Analysis of Blood Flow in Arteries. Dalam R. E. Singh (Ed.), Motion Analysis of Biological Systems: Advanced Theoretical and Computational Concepts (hlm. 89–121). Springer International Publishing. https://doi.org/10.1007/978-3-031-52977-1_7
Syakila, M., Nurhafiza, S., & Maharany, S. (2025). Merajut ilmu: Pendekatan interdisipliner dalam pembelajaran IPA melalui studi mekanisme aliran darah. Science Education and Development Journal Archives, 3(1), 10–18. https://doi.org/10.59923/sendja.v3i1.403
Takabe, H. (2024). Basic Properties of Plasma in Fluid Model. Dalam The Physics of Laser Plasmas and Applications—Volume 2: Fluid Models and Atomic Physics of Plasmas (hlm. 15–97). Springer International Publishing. https://doi.org/10.1007/978-3-031-45473-8_2
Taufiq, M., & Kaniawati, I. (2023). Mekanika Newtonian dan Signifikansi Filosofisnya. Jurnal Filsafat Indonesia, 6(2), 246–257. https://doi.org/10.23887/jfi.v6i2.53649
Yamin, M., Nashirudin, H. A., & Firmansyah, R. (2024). Fenomena Kontrol Aliran Secara Pasif Pada Konfigurasi Ahmed Body Menggunakan Segitiga Kendali. AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin, 10(2), 74–86. https://doi.org/10.32832/ame.v10i2.763
Yang, L., Liu, Y., Wang, W., Li, M., Wang, S., Xu, B., Shi, Y., & Chen, H. (2025). Pore-scale flow mechanism of immiscible gas-assisted gravity drainage in strongly heterogeneous glutenite reservoirs. International Journal of Coal Science & Technology, 12(1), 12. https://doi.org/10.1007/s40789-025-00758-5
Zega, B., & Gea, G. A. P. (2025). Analisis Pengaruh Tegangan Permukaan Pada Sistem Mikrofluida. Jurnal Ilmu Ekonomi, Pendidikan dan Teknik, 2(3), 37–44. https://doi.org/10.70134/identik.v1i2.114
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Arifatul Salsabila, Bismi Safmita, Som Chai (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.