Development of Piezoelectric Based Sensors for Structural Vibration Detection

Authors

  • Afiqoh Izzati Auni Universitas Islam Negeri Mahmud Yunus Batusangkar Author
  • Aisyah Rahmatullah Universitas Islam Negeri Mahmud Yunus Batusangkar Author
  • Chai Pao Kasetsart University, Bangkhen Author

Keywords:

Piezoelectric, Structural Monitoring, Vibration Sensor

Abstract

Structures such as bridges and high-rise buildings are inherently vulnerable to degradation caused by dynamic vibrations, which can lead to serious structural failures if not properly monitored. Conventional vibration sensing technologies often face limitations in terms of sensitivity, durability, and long-term reliability, particularly under varying environmental conditions. This study aims to develop and evaluate a piezoelectric-based vibration sensor designed to provide high sensitivity and long-term stability in structural health monitoring applications. A qualitative descriptive research approach was employed, utilizing data collection methods including in-depth interviews, field observations, and documentation analysis. Respondents included materials scientists, structural engineers, field technicians, and engineering students. The findings reveal that the piezoelectric sensor demonstrated a consistent and linear response to varying vibration intensities, even under repeated dynamic loading cycles. The sensor maintained stable performance without significant signal drift, indicating its potential for continuous structural monitoring. Furthermore, optimization in sensor protection and installation techniques significantly enhanced the device's operational lifespan and resilience to environmental stressors such as moisture and temperature fluctuations. These results suggest that piezoelectric vibration sensors, when properly engineered and installed, represent an innovative and effective solution for real-time structural integrity assessment. The study highlights the importance of integrating advanced sensing technologies in modern infrastructure maintenance systems to improve safety, reduce maintenance costs, and extend structural service life. Future research is recommended to further explore sensor calibration, wireless integration, and large-scale field implementation

References

Abramowicz, H., Almanza Soto, M., Altarelli, M., Aßmann, R., Athanassiadis, A., Avoni, G., Behnke, T., Benettoni, M., Benhammou, Y., Bhatt, J., Blackburn, T., Blanch, C., Bonaldo, S., Boogert, S., Borysov, O., Borysova, M., Boudry, V., Breton, D., Brinkmann, R., … LUXE Collaboration. (2024). Technical Design Report for the LUXE experiment. The European Physical Journal Special Topics, 233(10), 1709–1974. https://doi.org/10.1140/epjs/s11734-024-01164-9

Ahmed, A., Azam, A., Wang, Y., Zhang, Z., Li, N., Jia, C., Mushtaq, R. T., Rehman, M., Gueye, T., Shahid, M. B., & Wajid, B. A. (2021). Additively manufactured nano-mechanical energy harvesting systems: Advancements, potential applications, challenges and future perspectives. Nano Convergence, 8(1), 37. https://doi.org/10.1186/s40580-021-00289-0

Behera, A. (2022). Piezoelectric Materials. Dalam Advanced Materials: An Introduction to Modern Materials Science (hlm. 43–76). Springer International Publishing. https://doi.org/10.1007/978-3-030-80359-9_2

Bhatta, S., & Dang, J. (2024). Use of IoT for structural health monitoring of civil engineering structures: A state-of-the-art review. Urban Lifeline, 2(1), 17. https://doi.org/10.1007/s44285-024-00031-2

Chong, S. W., & Mason, S. (2021). Demystifying the process of scholarly peer-review: An autoethnographic investigation of feedback literacy of two award-winning peer reviewers. Humanities and Social Sciences Communications, 8(1), 266. https://doi.org/10.1057/s41599-021-00951-2

Ferreira, P. M., Caçador, D., Machado, M. A., Carvalho, M. S., Vilaça, P., Sorger, G., Farias, F. W. C., Figueiredo, A. R., & Vidal, C. (2025). Smart piezoelectric composite: Impact of piezoelectric ceramic microparticles embedded in heat-treated 7075-T651 aluminium alloy. International Journal of Mechanics and Materials in Design, 21(1), 155–180. https://doi.org/10.1007/s10999-024-09731-7

Ghasypham, Z. D. (2023). Rancang Bangun Deteksi Ketinggian dan Debit Air pada Pertemuan Tiga Aliran Sungai Berbasis Internet of Things. Jurnal Informatika dan Teknik Elektro Terapan, 11(3s1). https://doi.org/10.23960/jitet.v11i3s1.3564

Jean, F., Khan, M. U., Alazzam, A., & Mohammad, B. (2024). Advancement in piezoelectric nanogenerators for acoustic energy harvesting. Microsystems & Nanoengineering, 10(1), 197. https://doi.org/10.1038/s41378-024-00811-4

Kahya, H. (2024). The ethnocultural and sociological analysis of migrations documented in Shajara-i Tarākima (Turkmen genealogy). Humanities and Social Sciences Communications, 11(1), 638. https://doi.org/10.1057/s41599-024-03148-5

Knoll, F. (2023). Design and Construction Case Studies. Dalam R. Moura, F. Knoll, & M. Beer (Ed.), Understanding Human Errors in Construction Industry: Where, When, How and Why We Make Mistakes (hlm. 9–115). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37667-2_2

Kubasov, I. V., Kislyuk, A. M., Turutin, A. V., Malinkovich, M. D., & Parkhomenko, Yu. N. (2021). Bidomain Ferroelectric Crystals: Properties and Prospects of Application. Russian Microelectronics, 50(8), 571–616. https://doi.org/10.1134/S1063739721080035

Kumar, S., Sharma, V., Kumari, N., Kaur, G. A., Saha, A., Thakur, S., & Shandilya, M. (2024). Recent advances in perovskite materials: Exploring multifaceted properties for energy harvesting applications. Ionics, 30(9), 5159–5188. https://doi.org/10.1007/s11581-024-05658-3

Lee, S., Chen, Z., Luo, Y., Li, X., Lu, M., Huang, Z. H., & Huang, H. (2024). Enhanced prediction accuracy in high-speed grinding of brittle materials using advanced machine learning techniques. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-024-02532-x

Liu, Y., Bai, Y., Heng, B. C., Wang, Y., Zhang, X., Nguyen, T. D., & Deng, X. (2025). Biomimetic electroactive materials and devices for regenerative engineering. Nature Reviews Electrical Engineering, 2(3), 188–204. https://doi.org/10.1038/s44287-025-00145-x

Mitkus, R. (2024). Piezoelectricity and Piezoelectric Materials. Dalam Ultraviolet Light Curable Piezoelectric Multi-phase Composites (hlm. 15–50). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-56946-3_3

Nam, T. T., Hien, N. C., Long, N. X., Son, N. T., Dieu, N. T., Tai, N. N., & Hung, P. V. (2024). Control of Environmental Pollution from Maritime Activities. Dalam V. Maccarrone & M. Fadzil Akhir (Ed.), Coastal Sustainability: Insights from Southeast Asia and Beyond (hlm. 181–258). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75749-5_11

Raharjo, A. E. P., Novianto, J., & Wijaya, M. M. (2025). Literature Review Performa GaN dalam Low Voltage Komponen dan Sensor. JURNAL TECNOSCIENZA, 9(2), 236–249. https://doi.org/10.51158/zdy68t46

Raikar, R. G., & Kangda, M. Z. (2024). Blast mitigation of elevated water tanks equipped with resilient fluid viscous dampers. Innovative Infrastructure Solutions, 9(7), 238. https://doi.org/10.1007/s41062-024-01536-z

Yassin, M. H., Farhat, M. H., Soleimanpour, R., & Nahas, M. (2024). Fiber Bragg grating (FBG)-based sensors: A review of technology and recent applications in structural health monitoring (SHM) of civil engineering structures. Discover Civil Engineering, 1(1), 151. https://doi.org/10.1007/s44290-024-00141-4

Yu, X., Shen, Y., Cui, J., Ding, Y., Morsi, Y., Sun, B., Mo, X., & Gu, H. (2025). The potential application of electrical stimulation in tendon repair: A review. Med-X, 3(1), 7. https://doi.org/10.1007/s44258-025-00051-9

Zar, A., Hussain, Z., Akbar, M., Rabczuk, T., Lin, Z., Li, S., & Ahmed, B. (2024). Towards vibration-based damage detection of civil engineering structures: Overview, challenges, and future prospects. International Journal of Mechanics and Materials in Design, 20(3), 591–662. https://doi.org/10.1007/s10999-023-09692-3

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Development of Piezoelectric Based Sensors for Structural Vibration Detection. (2025). Ciencia: Multidisciplinary Journal of Science, 1(1), 43-53. https://journal.zmsadra.or.id/index.php/mjs/article/view/51